Minimal sparsity for scalable moment-SOS relaxations of the AC-OPF problem

Workshop of the RTE Chair at CentraleSupélec

Adrien Le Franc
May the 25th, 2023

LAAS CNRS, Toulouse, France
Outline of the presentation

1. Background on the moment hierarchy for POPs

2. The AC-OPF problem: POP formulation and scalability issue

3. Addressing large scale instances?

4. Conclusion and perspective
Outline of the presentation

1. Background on the moment hierarchy for POPs

2. The AC-OPF problem: POP formulation and scalability issue

3. Addressing large scale instances?

4. Conclusion and perspective
Polynomial Optimization Problem

\[\rho = \min_{x \in \mathcal{X}} f(x) \] \hspace{1cm} (POP)

- \(\mathcal{X} = \{ x \in \mathbb{R}^n \mid g_j(x) \geq 0, \ \forall j \in [1, m] \} \)
- \(f \) and all \(g_j \) are polynomial functions
- we assume that (POP) has a solution (e.g. \(\mathcal{X} \) is nonempty and compact)

Example (a nonconvex QCQP)

\[\rho = \min_{x \in \mathbb{R}^2} x_1 \]
\[s.t. \]
\[2x_1 - x_2 + 1 \geq 0 \]
\[2x_1 + x_2 + 1 \geq 0 \]
\[x_1^2 + x_2^2 = 1 \]
POP as a moment problem

\[
\rho = \min_{x \in \mathcal{X}} f(x) = \inf_{\mu \in \mathcal{M}(\mathcal{X})} \int_{\mathbb{R}^n} f(x) \mu(dx)
\]
\[
\rho = \min_{x \in \mathcal{X}} f(x) = \inf_{\mu \in \mathcal{M}(\mathcal{X})} \int_{\mathbb{R}^n} f(x) \mu(dx) \\
= \inf_{\mu \in \mathcal{M}(\mathcal{X})} \sum_{\alpha \in \text{supp}(f)} f_\alpha \int_{\mathbb{R}^n} x^\alpha \mu(dx)
\]
\[\rho = \min_{x \in \mathcal{X}} f(x) = \inf_{\mu \in \mathcal{M}(\mathcal{X})} \int_{\mathbb{R}^n} f(x) \mu(dx) \]

\[= \inf_{\mu \in \mathcal{M}(\mathcal{X})} \sum_{\alpha \in \text{supp}(f)} f_\alpha \int_{\mathbb{R}^n} x^\alpha \mu(dx) \]

\[= \inf \left\{ \sum_{\alpha \in \text{supp}(f)} f_\alpha y_\alpha \mid "y \text{ has a representing measure on } \mathcal{X}" \right\} \]
POP as a moment problem

\[\rho = \min_{x \in \mathcal{X}} f(x) = \inf_{\mu \in \mathcal{M}(\mathcal{X})} \int_{\mathbb{R}^n} f(x) \mu(dx) \]

\[= \inf_{\mu \in \mathcal{M}(\mathcal{X})} \sum_{\alpha \in \text{supp}(f)} f_{\alpha} \int_{\mathbb{R}^n} x^\alpha \mu(dx) \]

\[= \inf \left\{ \sum_{\alpha \in \text{supp}(f)} f_{\alpha} y_{\alpha} \mid "y \text{ has a representing measure on } \mathcal{X}" \right\} \]

Proposition (necessary condition)

If \(y \in \mathbb{R}^{N_2d} \) is the sequence of moments (up to order 2d) of a measure supported by the set \(\mathcal{X} \), then

- \(M_d(y) \succeq 0 \) (moment matrix)
- \(M_{d-d_j}(g_jy) \succeq 0 \), \(\forall j \in [1, m] \) (localizing matrices)
\[M_d(y) = (y_{\alpha+\beta})_{\alpha \in \mathbb{N}_d^n, \beta \in \mathbb{N}_d^n} \]

\[M_{d-d_j}(g_j y) = \left(\sum_{\gamma \in \text{supp}(g_j)} g_j,\gamma y_{\alpha+\beta+\gamma} \right)_{\alpha \in \mathbb{N}^{n-d_j}, \beta \in \mathbb{N}^{n-d_j}} \quad (d_j = \lceil \text{deg}(g_j) / 2 \rceil) \]

Example

For \(n = 2 \) and \(d = 1 \), \(M_d(y) \succeq 0 \) writes as

\[
\begin{pmatrix}
y_{00} & y_{10} & y_{01} \\
y_{10} & y_{20} & y_{11} \\
y_{01} & y_{11} & y_{02}
\end{pmatrix} \succeq 0
\]
The truncated moment hierarchy

\[\rho_d^{\text{MOM}} = \inf_{y \in \mathbb{R}^{N_{2d}}} \sum_{\alpha \in \text{supp}(f)} f_\alpha y_\alpha \]

s.t.
\[M_d(y) \succeq 0 \]
\[M_{d-j}(g_j y) \succeq 0, \quad \forall j \in [1, m] \]
\[y_0, \ldots, 0 = 1 \]
The truncated moment hierarchy

\[\rho_d^{\text{MOM}} = \inf_{y \in \mathbb{R}^{N \times 2d}} \sum_{\alpha \in \text{supp}(f)} f_\alpha y_\alpha \]

\[\text{s.t.} \quad M_d(y) \succeq 0 \]
\[M_{d-d_j}(g_j y) \succeq 0, \quad \forall j \in [1, m] \]
\[y_0, \ldots, 0 = 1 \]

Theorem (Lasserre [2001])

If the set \(\mathcal{X} \) is compact and satisfies an Archimedeaness property, then the monotonous non-decreasing sequence of values \(\{\rho_d^{\text{MOM}}\}_{d \in \mathbb{N}} \) of \((\text{MOM}_d) \) converges to the value \(\rho \) of \((\text{POP}) \).

NB: Archimedeaness can be enforced by adding a redundant ball constraint to \(\mathcal{X} \)
Moment relaxations are semidefinite programs

Example (nonconvex QCQP continued)

\[\rho_{1}^{MOM} = \min_{y \in \mathbb{R}^6} y_{10} \]

s.t. \[
\begin{pmatrix}
 y_{00} & y_{10} & y_{01} \\
 y_{10} & y_{20} & y_{11} \\
 y_{01} & y_{11} & y_{02}
\end{pmatrix} \succeq 0
\]

\[2y_{10} - y_{01} + 1 \geq 0 \]
\[2y_{10} + y_{01} + 1 \geq 0 \]
\[y_{20} + y_{02} - 1 = 0 \]
\[y_{00} = 1 \]
Moment relaxations are semidefinite programs

Example (nonconvex QCQP continued)

\[\rho_{1}^{\text{MOM}} = \min_{y \in \mathbb{R}^6} y_{10} \]

s.t. \[
\begin{pmatrix}
y_{00} & y_{10} & y_{01} \\
y_{10} & y_{20} & y_{11} \\
y_{01} & y_{11} & y_{02}
\end{pmatrix} \succeq 0
\]

\[2y_{10} - y_{01} + 1 \geq 0 \]
\[2y_{10} + y_{01} + 1 \geq 0 \]
\[y_{20} + y_{02} - 1 = 0 \]
\[y_{00} = 1 \]

<table>
<thead>
<tr>
<th>bound value</th>
<th>(\rho_{1}^{\text{MOM}})</th>
<th>(\rho_{2}^{\text{MOM}})</th>
<th>(\bar{\rho}) (NLP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Convergence of the Moment-SOS hierarchy of semidefinite programs

\[\rho = \min_{x \in X} f(x) \]

\[\rho_{d+1}^{\text{MOM}} \geq \rho_{d+1}^{\text{SOS}} \]

\[\rho_{d}^{\text{MOM}} \geq \rho_{d}^{\text{SOS}} \]

\[(d \geq \max_{j \in [0,m]} d_j) \]
1. Background on the moment hierarchy for POPs

2. The AC-OPF problem: POP formulation and scalability issue

3. Addressing large scale instances

4. Conclusion and perspective
Power grid data

PGLib’s case 14 IEEE
Notations for the AC-OPF problem

\[
\begin{align*}
\text{min} & \quad \sum_{g \in G} C_{2,g} \Re(s_g)^2 + C_{1,g} \Re(s_g) + C_{0,g} \\
\text{s.t.} & \quad \angle v_i = 0, \quad \forall i \in \mathcal{N}_r \\
& \quad S_g \leq s_g \leq \overline{S}_g, \quad \forall g \in \mathcal{G} \\
& \quad V_i \leq |v_i| \leq \overline{V}_i, \quad \forall i \in \mathcal{N}
\end{align*}
\]
Notations for the AC-OPF problem

\[
\begin{align*}
\min_{v \in \mathbb{C}^{|N|}, s \in \mathbb{C}^{|G|}, s^\ell \in \mathbb{C}^2|\mathcal{E}|} & \quad \sum_{g \in \mathcal{G}} C_{2,g} \Re(s_g)^2 + C_{1,g} \Re(s_g) + C_{0,g} \\
\text{s.t.} & \quad \angle v_i = 0, \quad \forall i \in \mathcal{N}_r \\
& \quad \underline{S}_g \leq s_g \leq \overline{S}_g, \quad \forall g \in \mathcal{G} \\
& \quad \underline{V}_i \leq |v_i| \leq \overline{V}_i, \quad \forall i \in \mathcal{N} \\
& \quad \sum_{g \in \mathcal{G}(i)} s_g - L_i - (Y_i^s)^* |v_i|^2 = \sum_{j \in \mathcal{N}(i)} s_{i,j}^\ell, \quad \forall i \in \mathcal{N} \\
& \quad s_{i,j}^\ell = (Y_{i,j} + Y_{i,j}^c)^* \frac{|v_i|^2}{|T_{i,j}|^2} - Y_{i,j}^* \frac{v_i v_j^*}{T_{i,j}}, \quad \forall (i,j) \in \mathcal{E} \\
& \quad s_{j,i}^\ell = (Y_{i,j} + Y_{j,i}^c)^* |v_j|^2 - Y_{i,j}^* \frac{v_i^* v_j}{T_{i,j}^*}, \quad \forall (i,j) \in \mathcal{E}
\end{align*}
\]
Notations for the AC-OPF problem

\[
\begin{align*}
\min_{v \in \mathbb{C}^{\left|\mathcal{N}\right|}} & \sum_{g \in \mathcal{G}} C_{2,g} \Re(s_g)^2 + C_{1,g} \Re(s_g) + C_{0,g} \\
\text{s.t.} & \angle v_i = 0, \ \forall i \in \mathcal{N}_r \\
& S_g \leq s_g \leq \overline{S}_g, \ \forall g \in \mathcal{G} \\
& V_i \leq |v_i| \leq \overline{V}_i, \ \forall i \in \mathcal{N} \\
& \sum_{g \in \mathcal{G}(i)} s_g - L_i - (Y^s_i)^* |v_i|^2 = \sum_{j \in \mathcal{N}(i)} s^\ell_{i,j}, \ \forall i \in \mathcal{N} \\
& s^\ell_{i,j} = (Y_{i,j} + Y^c_{i,j})^* \frac{|v_i|^2}{|T_{i,j}|^2} - Y^*_{i,j} \frac{v_i v_j^*}{T^*_{i,j}}, \ \forall (i,j) \in \mathcal{E} \\
& s^\ell_{j,i} = (Y_{i,j} + Y^c_{j,i})^* |v_j|^2 - Y^*_{i,j} \frac{v_i^* v_j}{T^*_{i,j}}, \ \forall (i,j) \in \mathcal{E} \\
& |s^\ell_{i,j}| \leq \overline{S}_{i,j}, \ \forall j \in \mathcal{N}(i), \ \forall i \in \mathcal{N} \\
& \Theta_{i,j} \leq \angle v_i v_j^* \leq \overline{\Theta}_{i,j}, \ \forall (i,j) \in \mathcal{E}
\end{align*}
\]
Polynomial optimization for AC-OPF

\[v_i = a_i + \text{i}b_i \, , \, \forall i \in [1, n] \]

Example (complex line power)

\[s_{i,j}^l = Z_{i,j}|v_i|^2 + Z'_{i,j}v_i v_j^* \]

\[\iff \]

\[
\begin{align*}
\mathcal{R}(s_{i,j}^l) &= \mathcal{R}(Z_{i,j})(a_i^2 + b_i^2) + \mathcal{R}(Z'_{i,j})(a_i a_j + b_i b_j) - \mathcal{S}(Z'_{i,j})(a_j b_i - a_i b_j) \\
\mathcal{S}(s_{i,j}^l) &= \mathcal{S}(Z_{i,j})(a_i^2 + b_i^2) + \mathcal{S}(Z'_{i,j})(a_i a_j + b_i b_j) + \mathcal{R}(Z'_{i,j})(a_j b_i - a_i b_j)
\end{align*}
\]

The AC-OPF problem can be written in form (POP)!
Scalability issue

- AC-OPF IEEE case 57 (no line/angle limits) → POP

<table>
<thead>
<tr>
<th></th>
<th>(POP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>variables</td>
<td>128</td>
</tr>
<tr>
<td>eq. constraints</td>
<td>115</td>
</tr>
<tr>
<td>ineq. constraints</td>
<td>128</td>
</tr>
</tbody>
</table>

ρ_MOM = 2 for PGLib’s case 57 IEEE is intractable! (with LAAS computers and current SDP solvers)
Scalability issue

- AC-OPF IEEE case 57 (no line/angle limits) → POP

<table>
<thead>
<tr>
<th>(POP)</th>
<th>variables</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>eq. constraints</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>ineq. constraints</td>
<td>128</td>
</tr>
</tbody>
</table>

- POP → moment relaxation

<table>
<thead>
<tr>
<th></th>
<th>$d = 1$</th>
<th>$d = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>size(y)</td>
<td>8.385</td>
<td>12.082.785</td>
</tr>
</tbody>
</table>

ρ_2^{MOM} for PGLib’s case 57 IEEE is intractable!
(with LAAS computers and current SDP solvers)
1. Background on the moment hierarchy for POPs

2. The AC-OPF problem: POP formulation and scalability issue

3. Addressing large scale instances?

4. Conclusion and perspective
3. Addressing large scale instances?

Correlative sparsity

Minimal sparsity
Exploiting sparsity for POPs

\[
\min_{x \in \mathbb{R}^3} x_1^2 + x_2^2 + x_3^2 + x_1 x_2 + x_2 x_3
\]

Exploit absence of \(x_1 x_3\) product?
Exploiting sparsity for POPs

\[
\min_{x \in \mathbb{R}^3} x_1^2 + x_2^2 + x_3^2 + x_1 x_2 + x_2 x_3
\]

Exploit absence of \(x_1 x_3\) product? Set \(\mathcal{I}_1 = \{1, 2\}, \mathcal{I}_2 = \{2, 3\}\)

\[
M_1(y) = \begin{pmatrix}
y_{000} & y_{100} & y_{010} & y_{001} \\
y_{100} & y_{200} & y_{110} & y_{101} \\
y_{010} & y_{110} & y_{020} & y_{011} \\
y_{001} & y_{101} & y_{011} & y_{002}
\end{pmatrix} \succeq 0 \text{ vs } \begin{cases} M_1(y|\mathcal{I}_1) \succeq 0 \\
M_1(y|\mathcal{I}_2) \succeq 0 \end{cases}
\]
Exploiting sparsity for POPs

\[
\min_{x \in \mathbb{R}^3} x_1^2 + x_2^2 + x_3^2 + x_1 x_2 + x_2 x_3
\]

Exploit absence of \(x_1 x_3\) product? Set \(I_1 = \{1, 2\}, I_2 = \{2, 3\}\)

\[
M_1(y) = \begin{pmatrix}
 y_{000} & y_{100} & y_{010} & y_{001} \\
 y_{100} & y_{200} & y_{110} & y_{101} \\
 y_{010} & y_{110} & y_{020} & y_{011} \\
 y_{001} & y_{101} & y_{011} & y_{002}
\end{pmatrix} \succeq 0 \text{ vs } \begin{cases}
M_1(y|I_1) \succeq 0 \\
M_1(y|I_2) \succeq 0
\end{cases}
\]

Reduce moment variables (MOM\(_d\)) / matrices size (SOS\(_d\))
A sparse moment hierarchy

\[
\rho_{d}^{\text{CS-MOM}} = \inf_{y} \sum_{\alpha \in \text{supp}(f)} f_{\alpha} y_{\alpha} \quad \text{(CS-MOM}_{d})
\]

s.t. \(M_{d}(y|I_{k}) \succeq 0 \), \(\forall k \in [1, p] \)

\(M_{d-d_{j}}(g_{j}y|I_{k}) \succeq 0 \), \(\forall j \in [1, m] \), \(\forall k \in [1, p] \)

\(y_{0, \ldots, 0} = 1 \)
A sparse moment hierarchy

\[
\rho_{d}^{\text{CS-MOM}} = \inf_{y} \sum_{\alpha \in \text{supp}(f)} f_{\alpha} y_{\alpha} \tag{\text{CS-MOM}_{d}}
\]

s.t. \[M_{d}(y|I_{k}) \succeq 0, \ \forall k \in [1, p] \]
\[M_{d-d_{j}}(g_{j}y|I_{k}) \succeq 0, \ \forall j \in [1, m], \ \forall k \in [1, p] \]
\[y_{0,\ldots,0} = 1 \]

Theorem (Lasserre [2006])

If the set \(\mathcal{X} \) is compact and satisfies an Archimedeaness property, and if the variable set \(\mathcal{I} = \{I_{k}\}_{k \in [1,p]} \) satisfies the running intersection property (RIP), then the monotonous non-decreasing sequence of values \(\{\rho_{d}^{\text{CS-MOM}}\}_{d \in \mathbb{N}} \) of \(\text{CS-MOM}_{d} \) converges to the value \(\rho \) of \(\text{POP} \).

NB: the maximum cliques of a chordal graph satisfy the RIP
Application to AC-OPF

IEEE case 57 after chordal extension + cliques:

\[
\begin{align*}
|\mathcal{I}| &= 52 \\
\max_{k \in [1, p]} |\mathcal{I}_k| &= 26
\end{align*}
\]

- POP → sparse moment relaxation

\[
\begin{array}{c|c|c}
 & d = 1 & d = 2 \\
\hline
\text{size}(y) & 1.950 & 122.286 \\
\end{array}
\]

- numerical result (IEEE case 57 perturbed):

<table>
<thead>
<tr>
<th></th>
<th>value</th>
<th>gap to $\bar{\rho}$ (%)</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\rho}$</td>
<td>2433.89</td>
<td>-</td>
<td>4.18</td>
</tr>
<tr>
<td>$\rho^\text{CS-MOM}_2$</td>
<td>2433.89</td>
<td>0.00</td>
<td>19,666.82</td>
</tr>
<tr>
<td>$\rho^\text{CS-MOM}_1$</td>
<td>2359.58</td>
<td>3.05</td>
<td>0.75</td>
</tr>
</tbody>
</table>
3. Addressing large scale instances?

 Correlative sparsity

 Minimal sparsity
Sparsity sets and scalability

- Interior point SDP solvers scale roughly in $O(N^3)$ with $N = \binom{m+d}{d}$ and $m = \max_{k \in [1,p]} |\mathcal{I}_k|$

- It is difficult to control the cardinalities of the sets $\{\mathcal{I}_k\}_{k \in [1,p]}$ obtained by chordal extension + cliques

We introduce **minimal sparsity** designed to reduce the cardinalities of the sets $\{\mathcal{I}_k\}_{k \in [1,p]}$ in AC-OPF
Minimal sparsity based on power flow equations

\[\{x_n\}_{n \in \mathcal{I}_{\#i}^m} = \{\mathcal{R}(v_i), \mathcal{I}(v_i)\} \bigcup_{j \in \mathcal{N}(i)} \{\mathcal{R}(v_j), \mathcal{I}(v_j)\} \bigcup_{g \in \mathcal{G}(i)} \{\mathcal{R}(s_g), \mathcal{I}(s_g)\} \]
More but smaller sparsity sets

PGLib’s case 57 IEEE

![Graph showing clique-based sparsity and minimal sparsity]
Second-order moment relaxations via minimal sparsity

- PGLib’s case 57 IEEE

<table>
<thead>
<tr>
<th></th>
<th>size(y)</th>
<th>time (s)</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_2</td>
<td>12,082,785</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>$\rho_2^{\text{CS-MOM}}$</td>
<td>122,286</td>
<td>19,666</td>
<td>2433.89</td>
</tr>
<tr>
<td>$\rho_2^{\text{MS-MOM}}$</td>
<td>23,526</td>
<td>45</td>
<td>2433.89</td>
</tr>
</tbody>
</table>
Second-order moment relaxations via minimal sparsity

- PGLib’s case 57 IEEE

<table>
<thead>
<tr>
<th>ρ_2</th>
<th>size(y)</th>
<th>time (s)</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_2^{CS-MOM}</td>
<td>12,082,785</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ρ_2^{MS-MOM}</td>
<td>122,286</td>
<td>19,666</td>
<td>2433.89</td>
</tr>
<tr>
<td>ρ_2^{CS-MOM}</td>
<td>23,526</td>
<td>45</td>
<td>2433.89</td>
</tr>
</tbody>
</table>

- Large scale instances?

<table>
<thead>
<tr>
<th>cases</th>
<th>gap (%)</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2868 RTE SAD</td>
<td>0.39</td>
<td>6,981</td>
</tr>
<tr>
<td>6468 RTE TYP</td>
<td>0.27</td>
<td>12,723</td>
</tr>
<tr>
<td>6470 RTE TYP</td>
<td>0.74</td>
<td>15,662</td>
</tr>
</tbody>
</table>
Outline of the presentation

1. Background on the moment hierarchy for POPs
2. The AC-OPF problem: POP formulation and scalability issue
3. Addressing large scale instances?
4. Conclusion and perspective
Further improvements for very large scale problems

AC-OPF formulates as a POP but...
typical instances in France have over 6000 nodes!

- Sparsity can help to address very large problems
- Minimal sparsity looks promising
to compute second-order relaxations of large instances
- We obtain very large SDPs whose numerical stability
 needs to be improved (future work)